Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397078

RESUMO

Hanseniaspora uvarum is the predominant yeast species in the majority of wine fermentations, which has only recently become amenable to directed genetic manipulation. The genetics and metabolism of H. uvarum have been poorly studied as compared to other yeasts of biotechnological importance. This work describes the construction and characterization of homozygous deletion mutants in the HuZWF1 gene, encoding glucose-6-phosphate dehydrogenase (G6PDH), which provides the entrance into the oxidative part of the pentose phosphate pathway (PPP) and serves as a major source of NADPH for anabolic reactions and oxidative stress response. Huzwf1 deletion mutants grow more slowly on glucose medium than wild-type and are hypersensitive both to hydrogen peroxide and potassium bisulfite, indicating that G6PDH activity is required to cope with these stresses. The mutant also requires methionine for growth. Enzyme activity can be restored by the expression of heterologous G6PDH genes from other yeasts and humans under the control of a strong endogenous promoter. These findings provide the basis for a better adaptation of H. uvarum to conditions used in wine fermentations, as well as its use for other biotechnological purposes and as an expression organism for studying G6PDH functions in patients with hemolytic anemia.


Assuntos
Hanseniaspora , Vinho , Humanos , Fermentação , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Hanseniaspora/enzimologia , Homozigoto , Deleção de Sequência
2.
J Biol Chem ; 289(29): 20245-58, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24895133

RESUMO

Nik1 orthologs are sensor kinases that function upstream of the high osmolarity glycerol/p38 MAPK pathway in fungi. They contain a poly-HAMP module at their N terminus, which plays a pivotal role in osmosensing as well as fungal death upon exposure to fludioxonil. DhNik1p is a typical member of this class that contains five HAMP domains and four HAMP-like linkers. We investigated the contribution of each of the HAMP-like linker regions to the functionality of DhNik1p and found that the HAMP4b linker was essential as its deletion resulted in the complete loss of activity. Replacement of this linker with flexible peptide sequences did not restore DhNik1p activity. Thus, the HAMP-like sequence and possibly structural features of this linker region are indispensable for the kinase activity of DhNik1p. To gain insight into the global shape of the poly-HAMP module in DhNik1p (HAMP1­5), multi-angle laser light and small angle x-ray scattering studies were carried out. Those data demonstrate that the maltose-binding protein-tagged HAMP1­5 protein exist as a dimer in solution with an elongated shape of maximum linear dimension ∼365 Å. Placement of a sequence similarity based model of the HAMP1­5 protein inside experimental data-based models showed how two chains of HAMP1­5 are entwined on each other and the overall structure retained a periodicity. Normal mode analysis of the structural model is consistent with the H4b linker being a key to native-like collective motion in the protein. Overall, our shape-function studies reveal how different elements in the HAMP1­5 structure mediate its function.


Assuntos
Debaryomyces/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Debaryomyces/efeitos dos fármacos , Debaryomyces/genética , Dioxóis/farmacologia , Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Genes Fúngicos , Histidina Quinase , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Quinases/genética , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Pirróis/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Homologia Estrutural de Proteína
3.
Neurology ; 75(13): 1189-94, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20876472

RESUMO

OBJECTIVES: To perform a comprehensive population genetic study of PARK2. PARK2 mutations are associated with juvenile parkinsonism, Alzheimer disease, cancer, leprosy, and diabetes mellitus, yet ironically, there has been no comprehensive study of PARK2 in control subjects; and to resolve controversial association of PARK2 heterozygous mutations with Parkinson disease (PD) in a well-powered study. METHODS: We studied 1,686 control subjects (mean age 66.1 ± 13.1 years) and 2,091 patients with PD (mean onset age 58.3 ± 12.1 years). We tested for PARK2 deletions/multiplications/copy number variations (CNV) using semiquantitative PCR and multiplex ligation-dependent probe amplification, and validated the mutations by real-time quantitative PCR. Subjects were tested for point mutations previously. Association with PD was tested as PARK2 main effect, and in combination with known PD risk factors: SNCA, MAPT, APOE, smoking, and coffee intake. RESULTS: A total of 0.95% of control subjects and 0.86% of patients carried a heterozygous CNV mutation. CNV mutations found in 16 control subjects were all in exons 1-4, sparing exons that encode functionally critical protein domains. Thirteen patients had 2 CNV mutations, 5 had 1 CNV and 1 point mutation, and 18 had 1 CNV mutation. Mutations found in patients spanned exons 2-9. In whites, having 1 CNV was not associated with increased risk (odds ratio 1.05, p = 0.89) or earlier onset of PD (64.7 ± 8.6 heterozygous vs 58.5 ± 11.8 normal). CONCLUSIONS: This comprehensive population genetic study in control subjects fills the void for a PARK2 reference dataset. There is no compelling evidence for association of heterozygous PARK2 mutations, by themselves or in combination with known risk factors, with PD.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Doença de Parkinson/genética , Deleção de Sequência/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Fatores Etários , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Feminino , Frequência do Gene , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/etiologia , Valores de Referência , Estatísticas não Paramétricas
4.
J Biol Chem ; 285(16): 12121-32, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20164185

RESUMO

The members of group III hybrid histidine kinases (HHK) are ubiquitous in fungi. Group III HHK have been implicated to function as osmosensors in the high osmolarity glycerol (HOG) pathway that is essential for fungal survival under high osmolarity stress. Recent literature suggests that group III HHK are also involved in conidia formation, virulence in several filamentous fungi, and are an excellent molecular target for antifungal agents. Thus, group III HHK constitute a very important group of sensor kinases. Structurally, group III HHK are distinct from Sln1p, the osmosensing HHK that regulates the HOG pathway in Saccharomyces cerevisiae. Group III HHK lack any transmembrane domain and typically contain HAMP domain repeats at the N terminus. Until now, it is not clear how group III HHK function as an osmosensor to regulate the HOG pathway. To investigate this, we undertook molecular characterization of DhNIK1, an ortholog from osmotolerant yeast Debaryomyces hansenii. We show here that DhNIK1 could complement sln1 mutation in S. cerevisiae thereby confirming its role as a bona fide osmosensor. We further investigated the role of HAMP domains by deleting them systematically. Our results clearly indicate that the HAMP4 domain is crucial for osmosensing by DhNik1p. Most importantly, we also show that the alternative interaction among the HAMP domains regulates the activity of DhNik1p like an "on-off switch" and thus provides, for the first time, an insight into the molecular mechanism of osmosensing by this group of HHKs.


Assuntos
Fungos/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Debaryomyces/enzimologia , Debaryomyces/genética , Fungos/genética , Genes Fúngicos , Teste de Complementação Genética , Histidina Quinase , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Concentração Osmolar , Filogenia , Proteínas Quinases/classificação , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Aminoácidos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
5.
Microbes Infect ; 7(9-10): 1097-109, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15919224

RESUMO

Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Laminina/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium leprae/fisiologia , Mapeamento de Interação de Proteínas , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular , Expressão Gênica , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Laminina/genética , Proteínas de Membrana/síntese química , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Células de Schwann/microbiologia , Deleção de Sequência
6.
Microbiology (Reading) ; 150(Pt 2): 483-496, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14766927

RESUMO

To better understand the biology and the virulence determinants of the two major mycobacterial human pathogens Mycobacterium tuberculosis and Mycobacterium leprae, their genome sequences have been determined recently. In silico comparisons revealed that among the 1439 genes common to both M. tuberculosis and M. leprae, 219 genes code for proteins that show no similarity with proteins from other organisms. Therefore, the latter 'core' genes could be specific for mycobacteria or even for the intracellular mycobacterial pathogens. To obtain more information as to whether these genes really were mycobacteria-specific, they were included in a focused macro-array, which also contained genes from previously defined regions of difference (RD) known to be absent from Mycobacterium bovis BCG relative to M. tuberculosis. Hybridization of DNA from 40 strains of the M. tuberculosis complex and in silico comparison of these genes with the near-complete genome sequences from Mycobacterium avium, Mycobacterium marinum and Mycobacterium smegmatis were undertaken to answer this question. The results showed that among the 219 conserved genes, very few were not present in all the strains tested. Some of these missing genes code for proteins of the ESAT-6 family, a group of highly immunogenic small proteins whose presence and number is variable among the genomically highly conserved members of the M. tuberculosis complex. Indeed, the results suggest that, with few exceptions, the 'core' genes conserved among M. tuberculosis H37Rv and M. leprae are also highly conserved among other mycobacterial strains, which makes them interesting potential targets for developing new specific anti-mycobacterial drugs. In contrast, the genes from RD regions showed great variability among certain members of the M. tuberculosis complex, and some new specific deletions in Mycobacterium canettii, Mycobacterium microti and seal isolates were identified and further characterized during this study. Together with the distribution of a particular 6 or 7 bp micro-deletion in the gene encoding the polyketide synthase pks15/1, these results confirm and further extend the revised phylogenetic model for the M. tuberculosis complex recently presented.


Assuntos
Antígenos de Bactérias/genética , Variação Genética , Família Multigênica , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Proteínas de Bactérias , Sequência de Bases , Biologia Computacional , Técnicas de Sonda Molecular , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Deleção de Sequência
7.
Gene ; 231(1-2): 95-104, 1999 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-10231573

RESUMO

We report here that the existence of the potentially broad substrate specificity protease Lon (also called La), is evolutionarily discontinuous within the order Actinomycetales. Lon homologues were identified in the fast-growing species Mycobacterium smegmatis, and the slow-growing species Micobacterium avium and Mycobacterium intracellulare. However, Lon homologues were not detected in the slow-growing species Mycobacterium tuberculosis, Mycobacterium bovis, or Mycobacterium leprae; or in the non-mycobacterial Actinomycetale Corynebacterium glutamica. To characterize the function of the Lon protease within the Actinomycetales, a viable M. smegmatis Deltalon strain was constructed, demonstrating that lon is not essential under certain conditions. Surprisingly, lon was also dispensable in M. smegmatis cells already lacking intact 20S proteasome alpha- and beta-subunit genes (called prcA and prcB, respectively). Creation of the later double deletion strain (prcBA::kan Deltalon) necessitated use of a novel gene deletion strategy that does not require an antibiotic resistance marker. The M. smegmatis prcBA::kan Deltalon double mutants displayed wild type (wt) growth rates and wt stress tolerances. In addition, the M. smegmatis prcBA::kan Deltalon double mutants degraded at wt rates the broad spectrum of truncated proteins induced by treating cells with puromycin. This later result was in sharp contrast to those in Escherichia coli, where either lon or hslUV single mutants are strongly impaired in their degradation of puromycyl peptides (hslV is a prcB homologue). Overall these data suggested that mycobacterial species contain additional ATP-dependent proteases that have broad substrate specificity. Consistent with this suggestion, M. smegmatis and M. tuberculosis each contain at least one homologue of ClpP, the proteolytic subunit common to the ClpAP and ClpXP proteases.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Proteínas de Choque Térmico/metabolismo , Mycobacterium smegmatis/enzimologia , Protease La , Serina Endopeptidases/metabolismo , Proteases Dependentes de ATP , Sequência de Bases , Primers do DNA , Proteínas de Choque Térmico/genética , Fenótipo , Deleção de Sequência , Serina Endopeptidases/genética , Especificidade da Espécie
9.
J Infect Dis ; 179(1): 187-91, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9841838

RESUMO

Host genetic factors including major histocompatibility complex (MHC) polymorphisms influence both susceptibility to leprosy per se and also to leprosy type. Non-MHC genes may play an important role, but such genes remain undefined. The influence of two non-MHC candidate genes was assessed in a case-control study of Bengali leprosy patients from Calcutta. Recent studies have implicated variation in the vitamin D receptor (VDR) gene in susceptibility to several diseases, including osteoporosis and pulmonary tuberculosis. In this population, homozygotes for the alternate alleles of the VDR polymorphism are associated, respectively, with lepromatous and tuberculoid leprosy. The NRAMP1 (natural resistance associated macrophage protein 1) gene may influence human mycobacterial disease susceptibility based on studies with the murine homologue Nramp1. However, no significant association was found between NRAMP1 and leprosy susceptibility. This study suggests that the VDR polymorphism may influence susceptibility to some diseases by affecting the type and the strength of the host immune response.


Assuntos
Proteínas de Transporte de Cátions , Hanseníase/genética , Receptores de Calcitriol/genética , Alelos , Sequência de Bases , Proteínas de Transporte/genética , Estudos de Casos e Controles , Primers do DNA/genética , Frequência do Gene , Variação Genética , Genótipo , Humanos , Imunogenética , Índia , Hanseníase/imunologia , Hanseníase Virchowiana/genética , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/genética , Hanseníase Tuberculoide/imunologia , Proteínas de Membrana/genética , Polimorfismo Genético , Receptores de Calcitriol/imunologia , Deleção de Sequência
10.
Infect Immun ; 65(2): 651-60, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9009327

RESUMO

A transposon insertion mutant of Haemophilus ducreyi 35000 possessing a truncated lipooligosaccharide (LOS) failed to bind the LOS-specific monoclonal antibody 3E6 (M. K. Stevens, L. D. Cope, J. D. Radolf, and E. J. Hansen, Infect. Immun. 63:2976-2982, 1995). This transposon was found to have inserted into the first of two tandem genes and also caused a deletion of chromosomal DNA upstream of this gene. These two genes, designated lbgA and lbgB, encoded predicted proteins with molecular masses of 25,788 and 40,236 Da which showed homology with proteins which function in lipopolysaccharide biosynthetic in other gram-negative bacteria. The tandem arrangement of the lbgA and lbgB genes was found to be conserved among H. ducreyi strains. Isogenic LOS mutants, constructed by the insertion of a cat cartridge into either the lbgA or the lbgB gene, expressed an LOS phenotype indistinguishable from that of the original transposon-derived LOS mutant. The wild-type LOS phenotype could be restored by complementation with the appropriate wild-type allele. These two LOS mutants proved to be as virulent as the wild-type parent strain in an animal model. A double mutant with a deletion of the lbgA and lbgB genes yielded equivocal results when its virulence was tested in an animal model.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Haemophilus ducreyi/genética , Lipopolissacarídeos/biossíntese , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , Clonagem Molecular , Sequência Conservada , Elementos de DNA Transponíveis , Teste de Complementação Genética , Haemophilus ducreyi/metabolismo , Lipopolissacarídeos/análise , Dados de Sequência Molecular , Mutagênese , Análise de Sequência de DNA , Deleção de Sequência , Virulência
11.
J Bacteriol ; 178(12): 3564-71, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8655555

RESUMO

The DNA sequence of the promoter region of the Mycobacterium smegmatis rpsL gene, which encodes the S12 ribosomal protein, was determined. Primer extension analysis and S1 nuclease protection experiments identified the 5' end of the rpsL mRNA to be 199 bp upstream of the translation initiation codon. The rpsL promoter contained sequences upstream of this start point for transcription that were similar to the canonical hexamers found at the -10 and -35 regions of promoters recognized by Esigma70, the major form of RNA polymerase in Escherichia coli. To define the promoter of the rpsL gene, DNA fragments containing progressive deletions of the upstream region of the rpsL gene were inserted into a plasmid vector containing a promoterless xylE gene. These insertions revealed that the 200 bp of DNA sequence immediately upstream from the translation initiation codon was not essential for promoter function. In addition, 5' deletions removing all but 34 bp upstream of the transcription start point retained greater than 90% promoter activity, suggesting that the -35 hexamer was not essential for promoter activity. To determine which nucleotides were critical for promoter function, oligonucleotide-directed mutagenesis and mutagenic PCR amplification were used to produce point mutations in the region upstream of the start point of transcription. Single base substitutions in the -10 hexamer, but not in the -35 hexamer, severely reduced rpsL promoter activity in vivo. Within the -10 hexamer, nucleotide substitutions causing divergence from the E. Coli sigma70 consensus reduced promoter activity. The DNA sequence immediately upstream from the - 10 hexamer contained the TGn motif described as an extended -10 region in prokaryotic promoters. Mutations in this motif, in combination with a transition at either the -38 or -37 position within the -35 hexamer, severely reduced promoter activity, indicating that in the absence of a functional -35 region, the rpsL promoter is dependent on the TGn sequence upstream from the -10 hexamer. Comparison of the nucleotide sequence of the rpsL promoter region of M. smegmatis with the homologous sequences from Mycobacterium leprae, Mycobacterium bovis, and Mycobacterium tuberculosis showed the presence in these slowly growing mycobacterial species of conserved promoter elements a similar distance upstream of the translation initiation codon of the rpsL gene, but these other mycobacterial promoters did not contain the extended -10 motif.


Assuntos
Mycobacterium/genética , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Sequência de Bases , Sequência Consenso , Primers do DNA/química , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , RNA Mensageiro/genética , Proteína S9 Ribossômica , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico
12.
J Bacteriol ; 177(23): 6874-80, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7592481

RESUMO

The ability to respond to osmotic stress by osmoregulation is common to virtually all living cells. Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium can achieve osmotolerance by import of osmoprotectants such as proline and glycine betaine by an import system encoded in an operon called proU with genes for proteins ProV, ProW, and ProX. In this report, we describe the discovery of a proU-type locus in the gram-positive bacterium Bacillus subtilis. It contains four open reading frames (ProV, ProW, ProX, and ProZ) with homology to the gram-negative ProU proteins, with the B. subtilis ProV, ProW, and ProX proteins having sequence homologies of 35, 29, and 17%, respectively, to the E. coli proteins. The B. subtilis ProZ protein is similar to the ProW protein but is smaller and, accordingly, may fulfill a novel role in osmoprotection. The B. subtilis proU locus was discovered while exploring the chromosomal sequence upstream from the spa operon in B. subtilis LH45, which is a subtilin-producing mutant of B. subtilis 168. B. subtilis LH45 had been previously constructed by transformation of strain 168 with linear DNA from B. subtilis ATCC 6633 (W. Liu and J. N. Hansen, J. Bacteriol. 173:7387-7390, 1991). Hybridization experiments showed that LH45 resulted from recombination in a region of homology in the proV gene, so that the proU locus in LH45 is a chimera between strains 168 and 6633. Despite being a chimera, this proU locus was fully functional in its ability to confer osmotolerance when glycine betaine was available in the medium. Conversely, a mutant (LH45 deltaproU) in which most of the proU locus had been deleted grew poorly at high osmolarity in the presence of glycine betaine. We conclude that the proU-like locus in B. subtilis LH45 is a gram-positive counterpart of the proU locus in gram-negative bacteria and probably evolved prior to the evolutionary split of prokaryotes into gram-positive and gram-negative forms.


Assuntos
Sistemas de Transporte de Aminoácidos , Antibacterianos/biossíntese , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Óperon , Peptídeos , Equilíbrio Hidroeletrolítico/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Bacteriocinas , Sequência de Bases , Betaína/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Pressão Osmótica , Prolina/metabolismo , Recombinação Genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos
13.
J Biol Chem ; 268(21): 15689-95, 1993 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-8101843

RESUMO

The cAMP response element (CRE) mediates cAMP responsiveness in many eukaryotic genes (Roesler, W. J., Vandenbark, G. R., and Hansen, R. W. (1988) J. Biol. Chem. 263, 9063-9066). The tyrosine hydroxylase gene (TH) contains a single copy of a consensus CRE at -45 to -38 base pair (bp) upstream of the transcription initiation site. Deletional and mutational analyses of the upstream 2400-base pair region of the rat TH gene using transient transfection assay demonstrated that the CRE was essential for both cAMP-mediated induction and basal transcription of the TH gene. Another domain between -365 and -151 bp, containing the AP1 site, contributed to transcription to a smaller degree. Thus, the CRE appears to play an important dual role as a basal promoter element and an inducible enhancer for TH transcription. Interactions between the DNA binding factors in nuclear extract and CRE-containing oligonucleotides were investigated by gel retardation and competition assays. Oligonucleotides corresponding to the CRE regions of the TH or somatostatin gene gave rise to a pair of distinct protein-DNA complexes with identical mobilities in the gel retardation assay, suggesting that similar nuclear factor(s) might bind to the CREs of the TH and somatostatin genes. This study emphasizes a fundamental role of the CRE in transcriptional activation of the TH gene in catecholaminergic cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica , Tirosina 3-Mono-Oxigenase/genética , Animais , Sequência de Bases , Análise Mutacional de DNA , Regulação Enzimológica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Células PC12 , Ratos , Deleção de Sequência , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA